Imbalanced Classification via Feature Dictionary-based Minority Oversampling

نویسندگان

چکیده

Image classification research is one of the fields continuously studied in computer vision domain, and several related studies have been actively conducted until recently. However, a limit exists regarding prediction performance real-world datasets due to data imbalance problem between classes. Data augmentation through artificial sample generation for minority classes methods used overcome this limitation. Among various oversampling methods, we propose feature dictionary-based generative model method. Feature dictionaries are built pretrained extractor, proposed synthesizes samples based on dictionary. Class-to-class balanced training can be by fine-tuning classifier as additional class. We experiment applying framework fashion dataset, which has an extreme class imbalance. The experimental results demonstrate that achieved highest top-1 public datasets. In addition, analyze number dictionary test effectiveness elements comprise using ablation studies.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oversampling Method for Imbalanced Classification

Classification problem for imbalanced datasets is pervasive in a lot of data mining domains. Imbalanced classification has been a hot topic in the academic community. From data level to algorithm level, a lot of solutions have been proposed to tackle the problems resulted from imbalanced datasets. SMOTE is the most popular data-level method and a lot of derivations based on it are developed to ...

متن کامل

WEMOTE - Word Embedding based Minority Oversampling Technique for Imbalanced Emotion and Sentiment Classification

Imbalanced training data always puzzles the supervised learning based emotion and sentiment classification. Several existing research showed that data sparseness and small disjuncts are the two major factors affecting the classification. Target to these two problems, this paper presents a word embedding based oversampling method. Firstly, a large-scale text corpus is used to train a continuous ...

متن کامل

Adaptive Oversampling for Imbalanced Data Classification

Data imbalance is known to significantly hinder the generalization performance of supervised learning algorithms. A common strategy to overcome this challenge is synthetic oversampling, where synthetic minority class examples are generated to balance the distribution between the examples of the majority and minority classes. We present a novel adaptive oversampling algorithm, VIRTUAL, that comb...

متن کامل

A Classification Model for Imbalanced Medical Data based on PCA and Farther Distance based Synthetic Minority Oversampling Technique

Medical data are extensively used in the diagnosis of human health. So it has played a vital role for physicians as well as in medical engineering. Accordingly, many types of research are going on related to this to have a better prediction of the diseases or to improve the diagnosis quality. However, most of the researchers work on either dimensionality space or imbalanced data. Due to this, s...

متن کامل

A Synthetic Minority Oversampling Method Based on Local Densities in Low-Dimensional Space for Imbalanced Learning

Imbalanced class distribution is a challenging problem in many real-life classification problems. Existing synthetic oversampling do suffer from the curse of dimensionality because they rely heavily on Euclidean distance. This paper proposed a new method, called Minority Oversampling Technique based on Local Densities in Low-Dimensional Space (or MOT2LD in short). MOT2LD first maps each trainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3161510